Nuprl Definition : monoid_hom

MonHom(M1,M2) ==  {f:|M1| ⟶ |M2|| IsMonHom{M1,M2}(f)} 



Definitions occuring in Statement :  monoid_hom_p: IsMonHom{M1,M2}(f) grp_car: |g| set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] grp_car: |g| monoid_hom_p: IsMonHom{M1,M2}(f)

Latex:
MonHom(M1,M2)  ==    \{f:|M1|  {}\mrightarrow{}  |M2||  IsMonHom\{M1,M2\}(f)\} 



Date html generated: 2016_05_15-PM-00_09_51
Last ObjectModification: 2015_09_23-AM-06_24_34

Theory : groups_1


Home Index