Nuprl Definition : monoid_hom
MonHom(M1,M2) ==  {f:|M1| ⟶ |M2|| IsMonHom{M1,M2}(f)} 
Definitions occuring in Statement : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
grp_car: |g|
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions occuring in definition : 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
grp_car: |g|
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
Latex:
MonHom(M1,M2)  ==    \{f:|M1|  {}\mrightarrow{}  |M2||  IsMonHom\{M1,M2\}(f)\} 
Date html generated:
2016_05_15-PM-00_09_51
Last ObjectModification:
2015_09_23-AM-06_24_34
Theory : groups_1
Home
Index