Nuprl Definition : omon

OMon ==  {g:AbMon| UniformLinorder(|g|;x,y.↑(x ≤b y)) ∧ (=b x,y. ((x ≤b y) ∧b (y ≤b x))) ∈ (|g| ⟶ |g| ⟶ 𝔹))} 



Definitions occuring in Statement :  abmonoid: AbMon grp_le: b grp_eq: =b grp_car: |g| ulinorder: UniformLinorder(T;x,y.R[x; y]) band: p ∧b q assert: b bool: 𝔹 infix_ap: y and: P ∧ Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  abmonoid: AbMon and: P ∧ Q ulinorder: UniformLinorder(T;x,y.R[x; y]) assert: b equal: t ∈ T function: x:A ⟶ B[x] grp_car: |g| bool: 𝔹 grp_eq: =b lambda: λx.A[x] band: p ∧b q infix_ap: y grp_le: b

Latex:
OMon  ==    \{g:AbMon|  UniformLinorder(|g|;x,y.\muparrow{}(x  \mleq{}\msubb{}  y))  \mwedge{}  (=\msubb{}  =  (\mlambda{}x,y.  ((x  \mleq{}\msubb{}  y)  \mwedge{}\msubb{}  (y  \mleq{}\msubb{}  x))))\} 



Date html generated: 2016_05_15-PM-00_10_46
Last ObjectModification: 2015_09_23-AM-06_24_39

Theory : groups_1


Home Index