Nuprl Definition : subgrp_p
s SubGrp of g == (s e) ∧ (∀a:|g|. ((s a)
⇒ (s (~ a)))) ∧ (∀a,b:|g|. ((s a)
⇒ (s b)
⇒ (s (a * b))))
Definitions occuring in Statement :
grp_inv: ~
,
grp_id: e
,
grp_op: *
,
grp_car: |g|
,
infix_ap: x f y
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
Definitions occuring in definition :
grp_id: e
,
and: P ∧ Q
,
grp_inv: ~
,
all: ∀x:A. B[x]
,
grp_car: |g|
,
implies: P
⇒ Q
,
apply: f a
,
infix_ap: x f y
,
grp_op: *
Latex:
s SubGrp of g ==
(s e) \mwedge{} (\mforall{}a:|g|. ((s a) {}\mRightarrow{} (s (\msim{} a)))) \mwedge{} (\mforall{}a,b:|g|. ((s a) {}\mRightarrow{} (s b) {}\mRightarrow{} (s (a * b))))
Date html generated:
2016_05_15-PM-00_08_47
Last ObjectModification:
2015_09_23-AM-06_24_20
Theory : groups_1
Home
Index