Nuprl Definition : p-sep

p-sep(x;y) ==  ∃n:ℕ+((x n) (y n) ∈ ℤ))



Definitions occuring in Statement :  nat_plus: + exists: x:A. B[x] not: ¬A apply: a int: equal: t ∈ T
Definitions occuring in definition :  exists: x:A. B[x] nat_plus: + not: ¬A equal: t ∈ T int: apply: a
FDL editor aliases :  p-sep

Latex:
p-sep(x;y)  ==    \mexists{}n:\mBbbN{}\msupplus{}.  (\mneg{}((x  n)  =  (y  n)))



Date html generated: 2018_05_21-PM-03_23_05
Last ObjectModification: 2018_02_05-AM-10_14_54

Theory : rings_1


Home Index