Nuprl Definition : is_ufm

IsUFM(g) ==  ∀b:|g|. ((¬(g-unit(b)))  (≡~)∃!as:Atom{g} List. (b (Π as) ∈ |g|))



Definitions occuring in Statement :  permr_massoc_rel: ~ exists_uni_upto: exists_uni_upto matom_ty: Atom{g} munit: g-unit(u) mon_reduce: mon_reduce list: List all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T grp_car: |g|
Definitions occuring in definition :  all: x:A. B[x] implies:  Q not: ¬A munit: g-unit(u) exists_uni_upto: exists_uni_upto list: List matom_ty: Atom{g} permr_massoc_rel: ~ equal: t ∈ T grp_car: |g| mon_reduce: mon_reduce

Latex:
IsUFM(g)  ==    \mforall{}b:|g|.  ((\mneg{}(g-unit(b)))  {}\mRightarrow{}  (\mequiv{}\msim{})\mexists{}!as:Atom\{g\}  List.  (b  =  (\mPi{}  as)))



Date html generated: 2016_05_16-AM-07_45_19
Last ObjectModification: 2015_09_23-AM-09_51_58

Theory : factor_1


Home Index