Nuprl Definition : perm_igrp
perm_igrp(T) ==  mk_igrp(Perm(T);λp,q. p O q;id_perm();λp.inv_perm(p))
Definitions occuring in Statement : 
comp_perm: comp_perm, 
inv_perm: inv_perm(p)
, 
id_perm: id_perm()
, 
perm: Perm(T)
, 
lambda: λx.A[x]
, 
mk_igrp: mk_igrp(T;op;id;inv)
Definitions occuring in definition : 
mk_igrp: mk_igrp(T;op;id;inv)
, 
perm: Perm(T)
, 
comp_perm: comp_perm, 
id_perm: id_perm()
, 
lambda: λx.A[x]
, 
inv_perm: inv_perm(p)
Latex:
perm\_igrp(T)  ==    mk\_igrp(Perm(T);\mlambda{}p,q.  p  O  q;id\_perm();\mlambda{}p.inv\_perm(p))
Date html generated:
2016_05_16-AM-07_29_07
Last ObjectModification:
2015_09_23-AM-09_51_15
Theory : perms_1
Home
Index