Nuprl Definition : perm_igrp

perm_igrp(T) ==  mk_igrp(Perm(T);λp,q. q;id_perm();λp.inv_perm(p))



Definitions occuring in Statement :  comp_perm: comp_perm inv_perm: inv_perm(p) id_perm: id_perm() perm: Perm(T) lambda: λx.A[x] mk_igrp: mk_igrp(T;op;id;inv)
Definitions occuring in definition :  mk_igrp: mk_igrp(T;op;id;inv) perm: Perm(T) comp_perm: comp_perm id_perm: id_perm() lambda: λx.A[x] inv_perm: inv_perm(p)

Latex:
perm\_igrp(T)  ==    mk\_igrp(Perm(T);\mlambda{}p,q.  p  O  q;id\_perm();\mlambda{}p.inv\_perm(p))



Date html generated: 2016_05_16-AM-07_29_07
Last ObjectModification: 2015_09_23-AM-09_51_15

Theory : perms_1


Home Index