Nuprl Definition : permr

as ≡(T) bs ==  (||as|| ||bs|| ∈ ℤc∧ (∃p:Sym(||as||). ∀i:ℕ||as||. (as[p.f i] bs[i] ∈ T))



Definitions occuring in Statement :  sym_grp: Sym(n) perm_f: p.f select: L[n] length: ||as|| int_seg: {i..j-} cand: c∧ B all: x:A. B[x] exists: x:A. B[x] apply: a natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  cand: c∧ B int: exists: x:A. B[x] sym_grp: Sym(n) all: x:A. B[x] int_seg: {i..j-} natural_number: $n length: ||as|| equal: t ∈ T apply: a perm_f: p.f select: L[n]

Latex:
as  \mequiv{}(T)  bs  ==    (||as||  =  ||bs||)  c\mwedge{}  (\mexists{}p:Sym(||as||).  \mforall{}i:\mBbbN{}||as||.  (as[p.f  i]  =  bs[i]))



Date html generated: 2016_05_16-AM-07_32_20
Last ObjectModification: 2015_09_23-AM-09_51_26

Theory : perms_2


Home Index