Nuprl Definition : permr_upto

as ≡ bs upto x,y.R[x; y]  ==  (||as|| ||bs|| ∈ ℤc∧ (∃p:Sym(||as||). ∀i:ℕ||as||. R[as[p.f i]; bs[i]])



Definitions occuring in Statement :  sym_grp: Sym(n) perm_f: p.f select: L[n] length: ||as|| int_seg: {i..j-} cand: c∧ B all: x:A. B[x] exists: x:A. B[x] apply: a natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  cand: c∧ B equal: t ∈ T int: exists: x:A. B[x] sym_grp: Sym(n) all: x:A. B[x] int_seg: {i..j-} natural_number: $n length: ||as|| apply: a perm_f: p.f select: L[n]

Latex:
as  \mequiv{}  bs  upto  x,y.R[x;  y]    ==    (||as||  =  ||bs||)  c\mwedge{}  (\mexists{}p:Sym(||as||).  \mforall{}i:\mBbbN{}||as||.  R[as[p.f  i];  bs[i]])



Date html generated: 2016_05_16-AM-07_34_07
Last ObjectModification: 2015_09_23-AM-09_51_27

Theory : perms_2


Home Index