Nuprl Definition : fabgrp

FAbGrp(s) ==
  {fg:fabgrp_sig{i:l}(s)| 
   ∀g:AbGrp. ∀h:|s| ⟶ |g|.
     (fg.umap h) !h':|fg.grp| ⟶ |g|. (IsMonHom{fg.grp,g}(h') ∧ ((h' fg.inj) h ∈ (|s| ⟶ |g|)))} 



Definitions occuring in Statement :  fabgrp_umap: f.umap fabgrp_inj: f.inj fabgrp_grp: f.grp fabgrp_sig: fabgrp_sig{i:l}(s) compose: g uni_sat: !x:T. Q[x] all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] equal: t ∈ T monoid_hom_p: IsMonHom{M1,M2}(f) abgrp: AbGrp grp_car: |g| set_car: |p|
Definitions occuring in definition :  set: {x:A| B[x]}  fabgrp_sig: fabgrp_sig{i:l}(s) abgrp: AbGrp all: x:A. B[x] uni_sat: !x:T. Q[x] apply: a fabgrp_umap: f.umap and: P ∧ Q monoid_hom_p: IsMonHom{M1,M2}(f) fabgrp_grp: f.grp equal: t ∈ T function: x:A ⟶ B[x] set_car: |p| grp_car: |g| compose: g fabgrp_inj: f.inj

Latex:
FAbGrp(s)  ==
    \{fg:fabgrp\_sig\{i:l\}(s)| 
      \mforall{}g:AbGrp.  \mforall{}h:|s|  {}\mrightarrow{}  |g|.
          (fg.umap  g  h)  =  !h':|fg.grp|  {}\mrightarrow{}  |g|.  (IsMonHom\{fg.grp,g\}(h')  \mwedge{}  ((h'  o  fg.inj)  =  h))\} 



Date html generated: 2016_05_16-AM-08_13_33
Last ObjectModification: 2015_09_23-AM-09_52_32

Theory : polynom_1


Home Index