Nuprl Definition : rng_p
rng_p(r) ==  grp_p(r↓+gp) ∧ mon_p(r↓xmn) ∧ BiLinear(|r|;+r;*)
Definitions occuring in Statement : 
grp_p: grp_p(g)
, 
mon_p: mon_p(g)
, 
and: P ∧ Q
, 
add_grp_of_rng: r↓+gp
, 
mul_mon_of_rng: r↓xmn
, 
rng_times: *
, 
rng_plus: +r
, 
rng_car: |r|
, 
bilinear: BiLinear(T;pl;tm)
Definitions occuring in definition : 
grp_p: grp_p(g)
, 
add_grp_of_rng: r↓+gp
, 
and: P ∧ Q
, 
mon_p: mon_p(g)
, 
mul_mon_of_rng: r↓xmn
, 
bilinear: BiLinear(T;pl;tm)
, 
rng_car: |r|
, 
rng_plus: +r
, 
rng_times: *
Latex:
rng\_p(r)  ==    grp\_p(r\mdownarrow{}+gp)  \mwedge{}  mon\_p(r\mdownarrow{}xmn)  \mwedge{}  BiLinear(|r|;+r;*)
Date html generated:
2016_05_16-AM-08_13_54
Last ObjectModification:
2015_09_23-AM-09_52_36
Theory : polynom_1
Home
Index