Nuprl Definition : rng_p

rng_p(r) ==  grp_p(r↓+gp) ∧ mon_p(r↓xmn) ∧ BiLinear(|r|;+r;*)



Definitions occuring in Statement :  grp_p: grp_p(g) mon_p: mon_p(g) and: P ∧ Q add_grp_of_rng: r↓+gp mul_mon_of_rng: r↓xmn rng_times: * rng_plus: +r rng_car: |r| bilinear: BiLinear(T;pl;tm)
Definitions occuring in definition :  grp_p: grp_p(g) add_grp_of_rng: r↓+gp and: P ∧ Q mon_p: mon_p(g) mul_mon_of_rng: r↓xmn bilinear: BiLinear(T;pl;tm) rng_car: |r| rng_plus: +r rng_times: *

Latex:
rng\_p(r)  ==    grp\_p(r\mdownarrow{}+gp)  \mwedge{}  mon\_p(r\mdownarrow{}xmn)  \mwedge{}  BiLinear(|r|;+r;*)



Date html generated: 2016_05_16-AM-08_13_54
Last ObjectModification: 2015_09_23-AM-09_52_36

Theory : polynom_1


Home Index