Nuprl Lemma : bm_cnt_prop_T
∀[T,Key:Type]. ∀[key:Key]. ∀[value:T]. ∀[cnt:ℤ]. ∀[left,right:binary_map(T;Key)].
  uiff(↑bm_cnt_prop(bm_T(key;value;cnt;left;right));(cnt = (1 + bm_numItems(left) + bm_numItems(right)) ∈ ℤ)
  ∧ (↑bm_cnt_prop(left))
  ∧ (↑bm_cnt_prop(right)))
Proof
Definitions occuring in Statement : 
bm_numItems: bm_numItems(m), 
bm_cnt_prop: bm_cnt_prop(m), 
bm_T: bm_T(key;value;cnt;left;right), 
binary_map: binary_map(T;Key), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bm_cnt_prop: bm_cnt_prop(m), 
top: Top, 
pi2: snd(t), 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B
Latex:
\mforall{}[T,Key:Type].  \mforall{}[key:Key].  \mforall{}[value:T].  \mforall{}[cnt:\mBbbZ{}].  \mforall{}[left,right:binary\_map(T;Key)].
    uiff(\muparrow{}bm\_cnt\_prop(bm\_T(key;value;cnt;left;right));(cnt
                                                                                                        =  (1  +  bm\_numItems(left)  +  bm\_numItems(right)))
    \mwedge{}  (\muparrow{}bm\_cnt\_prop(left))
    \mwedge{}  (\muparrow{}bm\_cnt\_prop(right)))
Date html generated:
2016_05_17-PM-01_38_50
Last ObjectModification:
2015_12_28-PM-08_10_57
Theory : binary-map
Home
Index