Nuprl Lemma : simple-loc-comb2-classrel

[Info,A,B,C:Type]. ∀[f:Id ⟶ A ⟶ B ⟶ C]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  uiff(v ∈ simple-loc-comb2(l,a,b.lifting2-loc(f;l;a;b);X;Y)(e);↓∃a:A
                                                                  ∃b:B
                                                                   (a ∈ X(e) ∧ b ∈ Y(e) ∧ (v (f loc(e) b) ∈ C)))


Proof




Definitions occuring in Statement :  lifting2-loc: lifting2-loc(f;loc;abag;bbag) simple-loc-comb2: simple-loc-comb2(l,a,b.F[l; a; b];X;Y) classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) es-E: E Id: Id uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uiff: uiff(P;Q) uimplies: supposing a squash: T classrel: v ∈ X(e) bag-member: x ↓∈ bs nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q int_seg: {i..j-} guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_type: SQType(T) select: L[n] cons: [a b] subtract: m less_than: a < b true: True funtype: funtype(n;A;T) eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff lifting2-loc: lifting2-loc(f;loc;abag;bbag) uncurry-rev: uncurry-rev(n;f) uncurry-gen: uncurry-gen(n) btrue: tt iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B simple-loc-comb2: simple-loc-comb2(l,a,b.F[l; a; b];X;Y)

Latex:
\mforall{}[Info,A,B,C:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
\mforall{}[v:C].
    uiff(v  \mmember{}  simple-loc-comb2(l,a,b.lifting2-loc(f;l;a;b);X;Y)(e);\mdownarrow{}\mexists{}a:A
                                                                                                                                    \mexists{}b:B
                                                                                                                                      (a  \mmember{}  X(e)
                                                                                                                                      \mwedge{}  b  \mmember{}  Y(e)
                                                                                                                                      \mwedge{}  (v  =  (f  loc(e)  a  b))))



Date html generated: 2016_05_17-AM-09_18_35
Last ObjectModification: 2016_01_17-PM-11_16_26

Theory : classrel!lemmas


Home Index