Nuprl Lemma : add-nat-missing-prop
∀s:nat-missing-type(). ∀x,y:ℕ.
  (↑member-nat-missing(x;add-nat-missing(y;s)) ⇐⇒ (x = y ∈ ℕ) ∨ (↑member-nat-missing(x;s)))
Proof
Definitions occuring in Statement : 
add-nat-missing: add-nat-missing(i;s), 
member-nat-missing: member-nat-missing(i;s), 
nat-missing-type: nat-missing-type(), 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
add-nat-missing: add-nat-missing(i;s), 
member-nat-missing: member-nat-missing(i;s), 
nat-missing-type: nat-missing-type(), 
nat: ℕ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
bfalse: ff, 
not: ¬A, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cand: A c∧ B, 
sq_stable: SqStable(P), 
squash: ↓T, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
guard: {T}, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
nequal: a ≠ b ∈ T 
Latex:
\mforall{}s:nat-missing-type().  \mforall{}x,y:\mBbbN{}.
    (\muparrow{}member-nat-missing(x;add-nat-missing(y;s))  \mLeftarrow{}{}\mRightarrow{}  (x  =  y)  \mvee{}  (\muparrow{}member-nat-missing(x;s)))
Date html generated:
2016_05_17-PM-01_45_24
Last ObjectModification:
2016_01_17-AM-11_38_09
Theory : datatype-signatures
Home
Index