Nuprl Lemma : assert-in-missing-nat-iff
∀i:ℕ. ∀missing:{l:ℕ List| l-ordered(ℕ;x,y.x < y;l)} .  (↑in-missing(i;missing) ⇐⇒ (i ∈ missing))
Proof
Definitions occuring in Statement : 
in-missing: in-missing(i;missing), 
l_member: (x ∈ l), 
list: T List, 
nat: ℕ, 
assert: ↑b, 
less_than: a < b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
rev_implies: P ⇐ Q, 
sq_stable: SqStable(P), 
so_lambda: λ2x.t[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_apply: x[s], 
false: False, 
in-missing: in-missing(i;missing), 
top: Top, 
uiff: uiff(P;Q), 
or: P ∨ Q, 
cand: A c∧ B, 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
squash: ↓T
Latex:
\mforall{}i:\mBbbN{}.  \mforall{}missing:\{l:\mBbbN{}  List|  l-ordered(\mBbbN{};x,y.x  <  y;l)\}  .    (\muparrow{}in-missing(i;missing)  \mLeftarrow{}{}\mRightarrow{}  (i  \mmember{}  missing))
Date html generated:
2016_05_17-PM-01_44_48
Last ObjectModification:
2016_01_17-AM-11_37_16
Theory : datatype-signatures
Home
Index