Nuprl Lemma : assert-member-nat-missing
∀[i:ℕ]. ∀[s:nat-missing-type()].  (↑member-nat-missing(i;s) ⇐⇒ (i ≤ (fst(s))) ∧ (¬(i ∈ snd(s))))
Proof
Definitions occuring in Statement : 
member-nat-missing: member-nat-missing(i;s), 
nat-missing-type: nat-missing-type(), 
l_member: (x ∈ l), 
nat: ℕ, 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
le: A ≤ B, 
iff: P ⇐⇒ Q, 
not: ¬A, 
and: P ∧ Q
Definitions unfolded in proof : 
member-nat-missing: member-nat-missing(i;s), 
nat-missing-type: nat-missing-type(), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
pi1: fst(t), 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nat: ℕ, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False, 
pi2: snd(t), 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_apply: x[s], 
cand: A c∧ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
le: A ≤ B
Latex:
\mforall{}[i:\mBbbN{}].  \mforall{}[s:nat-missing-type()].    (\muparrow{}member-nat-missing(i;s)  \mLeftarrow{}{}\mRightarrow{}  (i  \mleq{}  (fst(s)))  \mwedge{}  (\mneg{}(i  \mmember{}  snd(s))))
Date html generated:
2016_05_17-PM-01_44_56
Last ObjectModification:
2015_12_28-PM-08_52_16
Theory : datatype-signatures
Home
Index