Nuprl Lemma : int-decr-map-isEmpty-assert
∀[Value:Type]. ∀[m:int-decr-map-type(Value)].
  uiff(↑int-decr-map-isEmpty(m);m = int-decr-map-empty() ∈ int-decr-map-type(Value))
Proof
Definitions occuring in Statement : 
int-decr-map-isEmpty: int-decr-map-isEmpty(m), 
int-decr-map-empty: int-decr-map-empty(), 
int-decr-map-type: int-decr-map-type(Value), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
int-decr-map-isEmpty: int-decr-map-isEmpty(m), 
int-decr-map-type: int-decr-map-type(Value), 
int-decr-map-empty: int-decr-map-empty(), 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
top: Top, 
so_apply: x[s1;s2], 
gt: i > j, 
prop: ℙ, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
null: null(as), 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
strict4: strict4(F), 
implies: P ⇒ Q, 
has-value: (a)↓, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
nil: [], 
it: ⋅, 
btrue: tt, 
true: True, 
pi1: fst(t), 
sq_stable: SqStable(P)
Latex:
\mforall{}[Value:Type].  \mforall{}[m:int-decr-map-type(Value)].
    uiff(\muparrow{}int-decr-map-isEmpty(m);m  =  int-decr-map-empty())
Date html generated:
2016_05_17-PM-01_48_41
Last ObjectModification:
2016_01_18-PM-06_42_25
Theory : datatype-signatures
Home
Index