Nuprl Lemma : lookup-list-map-empty-prop
∀[Key:Type]. ∀[deqKey:EqDecider(Key)]. ∀[key:Key].  (¬↑lookup-list-map-inDom(deqKey;key;lookup-list-map-empty()))
Proof
Definitions occuring in Statement : 
lookup-list-map-empty: lookup-list-map-empty(), 
lookup-list-map-inDom: lookup-list-map-inDom(deqKey;key;m), 
deq: EqDecider(T), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
universe: Type
Definitions unfolded in proof : 
lookup-list-map-empty: lookup-list-map-empty(), 
lookup-list-map-inDom: lookup-list-map-inDom(deqKey;key;m), 
all: ∀x:A. B[x], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
member: t ∈ T, 
top: Top, 
so_apply: x[s1;s2;s3], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ
Latex:
\mforall{}[Key:Type].  \mforall{}[deqKey:EqDecider(Key)].  \mforall{}[key:Key].
    (\mneg{}\muparrow{}lookup-list-map-inDom(deqKey;key;lookup-list-map-empty()))
Date html generated:
2016_05_17-PM-01_51_02
Last ObjectModification:
2015_12_28-PM-08_50_11
Theory : datatype-signatures
Home
Index