Nuprl Lemma : lookup-list-map-inDom-prop
∀[Key,Value:Type]. ∀[deqKey:EqDecider(Key)]. ∀[key:Key]. ∀[m:lookup-list-map-type(Key;Value)].
  (↑lookup-list-map-inDom(deqKey;key;m) ⇐⇒ ↑isl(lookup-list-map-find(deqKey;key;m)))
Proof
Definitions occuring in Statement : 
lookup-list-map-inDom: lookup-list-map-inDom(deqKey;key;m), 
lookup-list-map-find: lookup-list-map-find(deqKey;key;m), 
lookup-list-map-type: lookup-list-map-type(Key;Value), 
deq: EqDecider(T), 
assert: ↑b, 
isl: isl(x), 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
universe: Type
Definitions unfolded in proof : 
lookup-list-map-type: lookup-list-map-type(Key;Value), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
lookup-list-map-find: lookup-list-map-find(deqKey;key;m), 
lookup-list-map-inDom: lookup-list-map-inDom(deqKey;key;m), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
apply-alist: apply-alist(eq;L;x), 
isl: isl(x), 
false: False, 
pi1: fst(t), 
pi2: snd(t), 
eqof: eqof(d), 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bor: p ∨bq, 
true: True, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
not: ¬A
Latex:
\mforall{}[Key,Value:Type].  \mforall{}[deqKey:EqDecider(Key)].  \mforall{}[key:Key].  \mforall{}[m:lookup-list-map-type(Key;Value)].
    (\muparrow{}lookup-list-map-inDom(deqKey;key;m)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}isl(lookup-list-map-find(deqKey;key;m)))
Date html generated:
2016_05_17-PM-01_50_56
Last ObjectModification:
2015_12_28-PM-08_50_46
Theory : datatype-signatures
Home
Index