Nuprl Lemma : lookup-list-map-isEmpty-prop
∀[Key,Value:Type]. ∀[deqKey:EqDecider(Key)]. ∀[m:lookup-list-map-type(Key;Value)].
  (↑lookup-list-map-isEmpty(m) ⇐⇒ ∀k:Key. (¬↑lookup-list-map-inDom(deqKey;k;m)))
Proof
Definitions occuring in Statement : 
lookup-list-map-isEmpty: lookup-list-map-isEmpty(m), 
lookup-list-map-inDom: lookup-list-map-inDom(deqKey;key;m), 
lookup-list-map-type: lookup-list-map-type(Key;Value), 
deq: EqDecider(T), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
universe: Type
Definitions unfolded in proof : 
lookup-list-map-type: lookup-list-map-type(Key;Value), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
false: False, 
rev_implies: P ⇐ Q, 
lookup-list-map-inDom: lookup-list-map-inDom(deqKey;key;m), 
lookup-list-map-isEmpty: lookup-list-map-isEmpty(m), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
true: True, 
subtype_rel: A ⊆r B, 
listp: A List+, 
or: P ∨ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
eqof: eqof(d)
Latex:
\mforall{}[Key,Value:Type].  \mforall{}[deqKey:EqDecider(Key)].  \mforall{}[m:lookup-list-map-type(Key;Value)].
    (\muparrow{}lookup-list-map-isEmpty(m)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}k:Key.  (\mneg{}\muparrow{}lookup-list-map-inDom(deqKey;k;m)))
Date html generated:
2016_05_17-PM-01_51_10
Last ObjectModification:
2015_12_28-PM-08_50_43
Theory : datatype-signatures
Home
Index