Nuprl Lemma : remove-nat-missing_wf
∀[i:ℕ]. ∀[s:nat-missing-type()].  (remove-nat-missing(i;s) ∈ nat-missing-type())
Proof
Definitions occuring in Statement : 
remove-nat-missing: remove-nat-missing(i;s), 
nat-missing-type: nat-missing-type(), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat-missing-type: nat-missing-type(), 
remove-nat-missing: remove-nat-missing(i;s), 
and: P ∧ Q, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
subtype_rel: A ⊆r B, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
cand: A c∧ B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
has-value: (a)↓, 
le: A ≤ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nequal: a ≠ b ∈ T , 
l_member: (x ∈ l), 
less_than: a < b, 
squash: ↓T, 
last: last(L), 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
l_before: x before y ∈ l, 
sublist: L1 ⊆ L2, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
increasing: increasing(f;k), 
subtract: n - m, 
select: L[n], 
cons: [a / b], 
eq_int: (i =z j), 
less_than': less_than'(a;b), 
int-minus-comparison-inc: int-minus-comparison-inc(f), 
comparison: comparison(T)
Latex:
\mforall{}[i:\mBbbN{}].  \mforall{}[s:nat-missing-type()].    (remove-nat-missing(i;s)  \mmember{}  nat-missing-type())
Date html generated:
2016_05_17-PM-01_45_55
Last ObjectModification:
2016_01_17-AM-11_38_12
Theory : datatype-signatures
Home
Index