Nuprl Lemma : singleton-nat-missing-prop
∀x,y:ℕ.  (↑member-nat-missing(x;singleton-nat-missing(y)) ⇐⇒ x = y ∈ ℕ)
Proof
Definitions occuring in Statement : 
singleton-nat-missing: singleton-nat-missing(i), 
member-nat-missing: member-nat-missing(i;s), 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
singleton-nat-missing: singleton-nat-missing(i), 
pi1: fst(t), 
pi2: snd(t), 
not: ¬A, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
guard: {T}, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}x,y:\mBbbN{}.    (\muparrow{}member-nat-missing(x;singleton-nat-missing(y))  \mLeftarrow{}{}\mRightarrow{}  x  =  y)
Date html generated:
2016_05_17-PM-01_45_14
Last ObjectModification:
2016_01_17-AM-11_37_09
Theory : datatype-signatures
Home
Index