Nuprl Lemma : singleton-nat-missing_wf
∀[i:ℕ]. (singleton-nat-missing(i) ∈ nat-missing-type())
Proof
Definitions occuring in Statement : 
singleton-nat-missing: singleton-nat-missing(i), 
nat-missing-type: nat-missing-type(), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
singleton-nat-missing: singleton-nat-missing(i), 
nat-missing-type: nat-missing-type(), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[i:\mBbbN{}].  (singleton-nat-missing(i)  \mmember{}  nat-missing-type())
Date html generated:
2016_05_17-PM-01_45_11
Last ObjectModification:
2016_01_17-AM-11_37_20
Theory : datatype-signatures
Home
Index