Nuprl Lemma : union-nat-missing-prop
∀s1,s2:nat-missing-type(). ∀x:ℕ.
  (↑member-nat-missing(x;union-nat-missing(s1;s2)) ⇐⇒ (↑member-nat-missing(x;s1)) ∨ (↑member-nat-missing(x;s2)))
Proof
Definitions occuring in Statement : 
union-nat-missing: union-nat-missing(s1;s2), 
member-nat-missing: member-nat-missing(i;s), 
nat-missing-type: nat-missing-type(), 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
union-nat-missing: union-nat-missing(s1;s2), 
nat-missing-type: nat-missing-type(), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
iff: P ⇐⇒ Q, 
pi1: fst(t), 
pi2: snd(t), 
nat: ℕ, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
top: Top, 
member-nat-missing: member-nat-missing(i;s), 
cand: A c∧ B, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Latex:
\mforall{}s1,s2:nat-missing-type().  \mforall{}x:\mBbbN{}.
    (\muparrow{}member-nat-missing(x;union-nat-missing(s1;s2))
    \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}member-nat-missing(x;s1))  \mvee{}  (\muparrow{}member-nat-missing(x;s2)))
Date html generated:
2016_05_17-PM-01_45_38
Last ObjectModification:
2016_01_17-AM-11_37_51
Theory : datatype-signatures
Home
Index