Nuprl Lemma : Comm-next-continue_wf
∀[l_comm,l_choose:Id]. ∀[piD:PiDataVal()]. ∀[cSt:Comm-state()].
  Comm-next-continue(l_comm;l_choose;piD;cSt) ∈ Comm-output() supposing ↑pDVcontinue?(piD)
Proof
Definitions occuring in Statement : 
Comm-next-continue: Comm-next-continue(l_comm;l_choose;piD;cSt), 
Comm-output: Comm-output(), 
Comm-state: Comm-state(), 
pDVcontinue?: pDVcontinue?(x), 
PiDataVal: PiDataVal(), 
Id: Id, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
Comm-next-continue: Comm-next-continue(l_comm;l_choose;piD;cSt), 
Comm-output: Comm-output(), 
append: as @ bs, 
all: ∀x:A. B[x], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
let: let, 
prop: ℙ, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
pi1: fst(t), 
pi2: snd(t), 
Comm-state: Comm-state(), 
not: ¬A, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Latex:
\mforall{}[l$_{comm}$,l$_{choose}$:Id].  \mforall{}[piD:PiDataVal()].  \mforall{}[cSt:Com\000Cm-state()].
    Comm-next-continue(l$_{comm}$;l$_{choose}$;piD;cSt)  \mmember{}  Comm\000C-output()  supposing  \muparrow{}pDVcontinue?(piD)
Date html generated:
2016_05_17-AM-11_33_53
Last ObjectModification:
2016_01_18-AM-07_47_46
Theory : event-logic-applications
Home
Index