Nuprl Lemma : atom-sdata-has-atom
∀[a,b:Atom1].  uiff(b#data(a):SecurityData;¬(a = b ∈ Atom1))
Proof
Definitions occuring in Statement : 
atom-sdata: data(a), 
sdata: SecurityData, 
free-from-atom: a#x:T, 
atom: Atom$n, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
not: ¬A, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}, 
exists: ∃x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
atom-sdata: data(a), 
tree_leaf: tree_leaf(value), 
tree_leaf-value: tree_leaf-value(v), 
pi2: snd(t), 
outr: outr(x)
Latex:
\mforall{}[a,b:Atom1].    uiff(b\#data(a):SecurityData;\mneg{}(a  =  b))
Date html generated:
2016_05_17-AM-11_39_06
Last ObjectModification:
2015_12_29-PM-06_46_54
Theory : event-logic-applications
Home
Index