Nuprl Lemma : pi-comm-decompose
∀[P:pi_term()]. P = picomm(picomm-pre(P);picomm-body(P)) ∈ pi_term() supposing ↑picomm?(P)
Proof
Definitions occuring in Statement : 
picomm-body: picomm-body(v), 
picomm-pre: picomm-pre(v), 
picomm?: picomm?(v), 
picomm: picomm(pre;body), 
pi_term: pi_term(), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
pizero: pizero(), 
picomm?: picomm?(v), 
pi1: fst(t), 
eq_atom: x =a y, 
not: ¬A, 
false: False, 
all: ∀x:A. B[x], 
picomm: picomm(pre;body), 
picomm-pre: picomm-pre(v), 
pi2: snd(t), 
picomm-body: picomm-body(v), 
squash: ↓T, 
true: True, 
pioption: pioption(left;right), 
pipar: pipar(left;right), 
pirep: pirep(body), 
pinew: pinew(name;body), 
guard: {T}
Latex:
\mforall{}[P:pi\_term()].  P  =  picomm(picomm-pre(P);picomm-body(P))  supposing  \muparrow{}picomm?(P)
Date html generated:
2016_05_17-AM-11_22_58
Last ObjectModification:
2016_01_18-AM-07_48_54
Theory : event-logic-applications
Home
Index