Nuprl Lemma : pi-option-decompose
∀[P:pi_term()]. P = pioption(pioption-left(P);pioption-right(P)) ∈ pi_term() supposing ↑pioption?(P)
Proof
Definitions occuring in Statement : 
pioption-right: pioption-right(v), 
pioption-left: pioption-left(v), 
pioption?: pioption?(v), 
pioption: pioption(left;right), 
pi_term: pi_term(), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
pizero: pizero(), 
pi_term_size: pi_term_size(p), 
pioption?: pioption?(v), 
pi1: fst(t), 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
picomm: picomm(pre;body), 
cand: A c∧ B, 
less_than: a < b, 
squash: ↓T, 
pioption: pioption(left;right), 
pioption-left: pioption-left(v), 
pi2: snd(t), 
pioption-right: pioption-right(v), 
true: True, 
pipar: pipar(left;right), 
pirep: pirep(body), 
pinew: pinew(name;body)
Latex:
\mforall{}[P:pi\_term()].  P  =  pioption(pioption-left(P);pioption-right(P))  supposing  \muparrow{}pioption?(P)
Date html generated:
2016_05_17-AM-11_23_02
Last ObjectModification:
2016_01_18-AM-07_49_26
Theory : event-logic-applications
Home
Index