Nuprl Lemma : pi-simple-subst-aux_wf
∀[P:pi_term()]. ∀[t,x:Name]. ∀[avoid:Name List].  (pi-simple-subst-aux(t;x;P;avoid) ∈ pi_term())
Proof
Definitions occuring in Statement : 
pi-simple-subst-aux: pi-simple-subst-aux(t;x;P;avoid), 
pi_term: pi_term(), 
name: Name, 
list: T List, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b, 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
pizero: pizero(), 
pi-rank: pi-rank(p), 
pi_term_ind: pi_term_ind(v;zero;pre,body,rec1....;left,right,rec2,rec3....;left,right,rec4,rec5....;body,rec6....;name,body,rec7....), 
pi-simple-subst-aux: pi-simple-subst-aux(t;x;P;avoid), 
ycomb: Y, 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
picomm: picomm(pre;body), 
let: let, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
pioption: pioption(left;right), 
pipar: pipar(left;right), 
pirep: pirep(body), 
pinew: pinew(name;body)
Latex:
\mforall{}[P:pi\_term()].  \mforall{}[t,x:Name].  \mforall{}[avoid:Name  List].    (pi-simple-subst-aux(t;x;P;avoid)  \mmember{}  pi\_term())
Date html generated:
2016_05_17-AM-11_25_07
Last ObjectModification:
2016_01_18-AM-07_49_15
Theory : event-logic-applications
Home
Index