Nuprl Lemma : pi-system_wf
∀[f:(Id List) ⟶ Id]. ∀[l_server,l_choose,l_comm,l_pi:Id].
  (pi-system(f;l_server;l_choose;l_comm;l_pi) ∈ pi_term() ⟶ System(P.piM(P)))
Proof
Definitions occuring in Statement : 
pi-system: pi-system(f;l_server;l_choose;l_comm;l_pi), 
piM: piM(T), 
pi_term: pi_term(), 
System: System(P.M[P]), 
Id: Id, 
list: T List, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pi-system: pi-system(f;l_server;l_choose;l_comm;l_pi), 
System: System(P.M[P]), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
pInTransit: pInTransit(P.M[P]), 
pCom: pCom(P.M[P]), 
Com: Com(P.M[P]), 
mk-tagged: mk-tagged(tg;x), 
tagged+: T |+ z:B, 
isect2: T1 ⋂ T2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
rev_uimplies: rev_uimplies(P;Q), 
eq_atom: x =a y, 
assert: ↑b, 
true: True, 
piM: piM(T), 
bfalse: ff, 
bnot: ¬bb, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
top: Top
Latex:
\mforall{}[f:(Id  List)  {}\mrightarrow{}  Id].  \mforall{}[l$_{server}$,l$_{choose}$,l$\mbackslash{}ff5\000Cf{comm}$,l$_{pi}$:Id].
    (pi-system(f;l$_{server}$;l$_{choose}$;l$_{com\000Cm}$;l$_{pi}$)  \mmember{}  pi\_term()  {}\mrightarrow{}  System(P.piM(P)))
Date html generated:
2016_05_17-AM-11_35_23
Last ObjectModification:
2015_12_29-PM-06_49_59
Theory : event-logic-applications
Home
Index