Nuprl Lemma : picomm?_wf
∀[v:pi_term()]. (picomm?(v) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
picomm?: picomm?(v), 
pi_term: pi_term(), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
pizero: pizero(), 
picomm?: picomm?(v), 
pi1: fst(t), 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
picomm: picomm(pre;body), 
pioption: pioption(left;right), 
pipar: pipar(left;right), 
pirep: pirep(body), 
pinew: pinew(name;body)
Latex:
\mforall{}[v:pi\_term()].  (picomm?(v)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_17-AM-11_21_27
Last ObjectModification:
2015_12_29-PM-06_55_15
Theory : event-logic-applications
Home
Index