Nuprl Lemma : process-ordered-message_wf_simple
∀[M:Type]. ∀[nL:ℤ × ((ℤ × M) List)]. ∀[km:ℤ × M].  (process-ordered-message(nL;km) ∈ (ℤ × M) List × ℤ × ((ℤ × M) List))
Proof
Definitions occuring in Statement : 
process-ordered-message: process-ordered-message(nL;km), 
list: T List, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
product: x:A × B[x], 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
process-ordered-message: process-ordered-message(nL;km), 
has-value: (a)↓, 
insert-ordered-message: insert-ordered-message(L;x), 
insert-combine: insert-combine(cmp;f;x;l), 
uimplies: b supposing a, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
subtype_rel: A ⊆r B, 
comparison: comparison(T), 
all: ∀x:A. B[x], 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
pi1: fst(t), 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
so_apply: x[s1;s2;s3], 
bor: p ∨bq, 
cons: [a / b], 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtract: n - m, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
listp: A List+, 
pi2: snd(t)
Latex:
\mforall{}[M:Type].  \mforall{}[nL:\mBbbZ{}  \mtimes{}  ((\mBbbZ{}  \mtimes{}  M)  List)].  \mforall{}[km:\mBbbZ{}  \mtimes{}  M].
    (process-ordered-message(nL;km)  \mmember{}  (\mBbbZ{}  \mtimes{}  M)  List  \mtimes{}  \mBbbZ{}  \mtimes{}  ((\mBbbZ{}  \mtimes{}  M)  List))
Date html generated:
2016_05_17-PM-00_57_28
Last ObjectModification:
2016_01_18-AM-07_40_09
Theory : event-logic-applications
Home
Index