Nuprl Lemma : processComm_wf2
∀[l_comm,l_choose:Id].  (processComm(l_comm;l_choose) ∈ pi-process())
Proof
Definitions occuring in Statement : 
processComm: processComm(l_comm;l_choose), 
pi-process: pi-process(), 
Id: Id, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
piM: piM(T), 
Com: Com(P.M[P]), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
processComm: processComm(l_comm;l_choose), 
Comm-state: Comm-state(), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
Comm-output: Comm-output(), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
so_apply: x[s1;s2], 
tag-by: z×T, 
tag-case: z:T, 
nequal: a ≠ b ∈ T , 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
eq_atom: x =a y
Latex:
\mforall{}[l$_{comm}$,l$_{choose}$:Id].    (processComm(l$_\mbackslash{}ff7\000Cbcomm}$;l$_{choose}$)  \mmember{}  pi-process())
Date html generated:
2016_05_17-AM-11_34_03
Last ObjectModification:
2015_12_29-PM-06_53_06
Theory : event-logic-applications
Home
Index