Nuprl Lemma : rank-comm-decompose
∀[P:pi_term()]. pi-rank(P) = (pi-rank(picomm-body(P)) + 1) ∈ ℕ supposing ↑picomm?(P)
Proof
Definitions occuring in Statement : 
pi-rank: pi-rank(p), 
picomm-body: picomm-body(v), 
picomm?: picomm?(v), 
pi_term: pi_term(), 
nat: ℕ, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
add: n + m, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
nat: ℕ, 
guard: {T}, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[P:pi\_term()].  pi-rank(P)  =  (pi-rank(picomm-body(P))  +  1)  supposing  \muparrow{}picomm?(P)
Date html generated:
2016_05_17-AM-11_23_44
Last ObjectModification:
2016_01_18-AM-07_48_44
Theory : event-logic-applications
Home
Index