Nuprl Lemma : rank-comm
∀[P:pi_term()]. ∀[pre:pi_prefix()].  (pi-rank(picomm(pre;P)) = (pi-rank(P) + 1) ∈ ℕ)
Proof
Definitions occuring in Statement : 
pi-rank: pi-rank(p), 
picomm: picomm(pre;body), 
pi_term: pi_term(), 
pi_prefix: pi_prefix(), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
add: n + m, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
nat: ℕ, 
guard: {T}, 
prop: ℙ, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
pi-rank: pi-rank(p), 
pi_term_ind: pi_term_ind(v;zero;pre,body,rec1....;left,right,rec2,rec3....;left,right,rec4,rec5....;body,rec6....;name,body,rec7....), 
picomm: picomm(pre;body), 
subtype_rel: A ⊆r B
Latex:
\mforall{}[P:pi\_term()].  \mforall{}[pre:pi\_prefix()].    (pi-rank(picomm(pre;P))  =  (pi-rank(P)  +  1))
Date html generated:
2016_05_17-AM-11_23_42
Last ObjectModification:
2016_01_18-AM-07_48_39
Theory : event-logic-applications
Home
Index