Nuprl Lemma : ses-ordering-ordering'
∀s:SES. (PropertyO ⇒ ActionsDisjoint ⇒ ses-ordering'(s))
Proof
Definitions occuring in Statement : 
ses-disjoint: ActionsDisjoint, 
ses-ordering': ses-ordering'(s), 
ses-ordering: PropertyO, 
security-event-structure: SES, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
ses-ordering': ses-ordering'(s), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
nat: ℕ, 
cand: A c∧ B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
es-E-interface: E(X), 
sq_type: SQType(T), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
infix_ap: x f y, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ge: i ≥ j , 
iff: P ⇐⇒ Q, 
ses-info-flow: ->>, 
ses-ordering: PropertyO, 
squash: ↓T, 
same-action: same-action(x;y), 
rel_exp: R^n, 
subtract: n - m, 
eq_int: (i =z j), 
nat_plus: ℕ+, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
event-has*: e has* a, 
rel_star: R^*
Latex:
\mforall{}s:SES.  (PropertyO  {}\mRightarrow{}  ActionsDisjoint  {}\mRightarrow{}  ses-ordering'(s))
Date html generated:
2016_05_17-PM-00_28_07
Last ObjectModification:
2016_01_18-AM-07_50_58
Theory : event-logic-applications
Home
Index