Nuprl Lemma : accum-class-val
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[base,f:Top]. ∀[e:E].
  accum-class(a,x.f[a;x];x.base[x];X)(e) ~ accum_list(a,e.f[a;X(e)];e.base[X(e)];≤(X)(e)) 
  supposing ↑e ∈b accum-class(a,x.f[a;x];x.base[x];X)
Proof
Definitions occuring in Statement : 
accum-class: accum-class(a,x.f[a; x];x.base[x];X), 
es-interface-predecessors: ≤(X)(e), 
eclass-val: X(e), 
in-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
accum_list: accum_list(a,x.f[a; x];x.base[x];L), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s1;s2], 
so_apply: x[s], 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
accum-class: accum-class(a,x.f[a; x];x.base[x];X), 
in-eclass: e ∈b X, 
eclass-val: X(e), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
eclass: EClass(A[eo; e]), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
top: Top, 
eq_int: (i =z j), 
assert: ↑b, 
prop: ℙ, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[base,f:Top].  \mforall{}[e:E].
    accum-class(a,x.f[a;x];x.base[x];X)(e)  \msim{}  accum\_list(a,e.f[a;X(e)];e.base[X(e)];\mleq{}(X)(e)) 
    supposing  \muparrow{}e  \mmember{}\msubb{}  accum-class(a,x.f[a;x];x.base[x];X)
Date html generated:
2016_05_16-PM-11_09_42
Last ObjectModification:
2015_12_29-AM-10_34_48
Theory : event-ordering
Home
Index