Nuprl Lemma : accum-class_wf
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[b:A ⟶ B]. ∀[f:B ⟶ A ⟶ B].  (accum-class(b,a.f[b;a];a.b[a];X) ∈ EClass(B))
Proof
Definitions occuring in Statement : 
accum-class: accum-class(a,x.f[a; x];x.base[x];X), 
eclass: EClass(A[eo; e]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
accum-class: accum-class(a,x.f[a; x];x.base[x];X), 
eclass: EClass(A[eo; e]), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
es-E-interface: E(X), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
true: True, 
prop: ℙ, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bnot: ¬bb, 
false: False
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[b:A  {}\mrightarrow{}  B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].
    (accum-class(b,a.f[b;a];a.b[a];X)  \mmember{}  EClass(B))
Date html generated:
2016_05_16-PM-11_09_09
Last ObjectModification:
2015_12_29-AM-10_35_40
Theory : event-ordering
Home
Index