Nuprl Lemma : add-graph-decls-declares-tag
∀dd:DeclSet. ∀G:Graph(|dd|). ∀T:Type. ∀a:Id ⟶ Id ⟶ Id. ∀b:Id.
  (es-decl-set-declares-tag{i:l}(dd;b;T) ⇒ es-decl-set-declares-tag{i:l}(add-graph-decls(dd;G;T;a;b);b;T))
Proof
Definitions occuring in Statement : 
add-graph-decls: add-graph-decls(dd;G;T;a;b), 
es-decl-set-declares-tag: es-decl-set-declares-tag{i:l}(dd;b;T), 
es-decl-set-domain: |dd|, 
es-decl-set: DeclSet, 
id-graph: Graph(S), 
Id: Id, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
es-decl-set: DeclSet, 
es-decl-set-domain: |dd|, 
pi1: fst(t), 
es-decl-set-declares-tag: es-decl-set-declares-tag{i:l}(dd;b;T), 
spreadn: spread3, 
add-graph-decls: add-graph-decls(dd;G;T;a;b), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
top: Top, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
iff: P ⇐⇒ Q, 
true: True, 
fpf-ap: f(x), 
pi2: snd(t), 
fpf-const: L |-fpf-> v, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
false: False, 
fpf-domain: fpf-domain(f), 
rev_implies: P ⇐ Q
Latex:
\mforall{}dd:DeclSet.  \mforall{}G:Graph(|dd|).  \mforall{}T:Type.  \mforall{}a:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  Id.  \mforall{}b:Id.
    (es-decl-set-declares-tag\{i:l\}(dd;b;T)
    {}\mRightarrow{}  es-decl-set-declares-tag\{i:l\}(add-graph-decls(dd;G;T;a;b);b;T))
Date html generated:
2016_05_16-PM-00_59_04
Last ObjectModification:
2015_12_29-PM-01_45_20
Theory : event-ordering
Home
Index