Nuprl Lemma : bind-return-right
∀[Info,T:Type]. ∀[X:EClass(T)].  (X >x> return-class(x) = X ∈ EClass(T))
Proof
Definitions occuring in Statement : 
return-class: return-class(x), 
bind-class: X >x> Y[x], 
eclass: EClass(A[eo; e]), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
eclass: EClass(A[eo; e]), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bind-class: X >x> Y[x], 
es-le-before: ≤loc(e), 
bag-append: as + bs, 
prop: ℙ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
return-class: return-class(x), 
single-bag: {x}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
top: Top, 
squash: ↓T, 
true: True
Latex:
\mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].    (X  >x>  return-class(x)  =  X)
Date html generated:
2016_05_16-PM-02_25_40
Last ObjectModification:
2016_01_17-PM-07_36_21
Theory : event-ordering
Home
Index