Nuprl Lemma : class-output-member-support
∀[Info,T:Type]. ∀[es:EO+(Info)]. ∀[bg:bag(E)]. ∀[x:T]. ∀[X:EClass(T)].
  ↓∃e:E. (e ↓∈ class-output-support(es;bg) ∧ x ∈ X(e)) supposing x ↓∈ class-output(X;es;bg)
Proof
Definitions occuring in Statement : 
classrel: v ∈ X(e), 
class-output-support: class-output-support(es;bg), 
class-output: class-output(X;es;bg), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
squash: ↓T, 
and: P ∧ Q, 
universe: Type, 
bag-member: x ↓∈ bs, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
squash: ↓T, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
class-output-support: class-output-support(es;bg), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
rev_uimplies: rev_uimplies(P;Q), 
bag-member: x ↓∈ bs, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Latex:
\mforall{}[Info,T:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[bg:bag(E)].  \mforall{}[x:T].  \mforall{}[X:EClass(T)].
    \mdownarrow{}\mexists{}e:E.  (e  \mdownarrow{}\mmember{}  class-output-support(es;bg)  \mwedge{}  x  \mmember{}  X(e))  supposing  x  \mdownarrow{}\mmember{}  class-output(X;es;bg)
Date html generated:
2016_05_16-PM-01_59_37
Last ObjectModification:
2016_01_17-PM-07_40_29
Theory : event-ordering
Home
Index