Nuprl Lemma : classrel-classfun-res
∀[Info,T:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(T)]. ∀[e:E]. ∀[v:T].
  (uiff(v ∈ X(e);v = X@e ∈ T)) supposing (single-valued-classrel(es;X;T) and (↑e ∈b X))
Proof
Definitions occuring in Statement : 
classfun-res: X@e, 
single-valued-classrel: single-valued-classrel(es;X;T), 
classrel: v ∈ X(e), 
member-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
assert: ↑b, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
classrel: v ∈ X(e), 
bag-member: x ↓∈ bs, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
single-valued-classrel: single-valued-classrel(es;X;T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Latex:
\mforall{}[Info,T:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(T)].  \mforall{}[e:E].  \mforall{}[v:T].
    (uiff(v  \mmember{}  X(e);v  =  X@e))  supposing  (single-valued-classrel(es;X;T)  and  (\muparrow{}e  \mmember{}\msubb{}  X))
Date html generated:
2016_05_16-PM-01_44_53
Last ObjectModification:
2016_01_17-PM-07_48_09
Theory : event-ordering
Home
Index