Nuprl Lemma : consensus-rcvs-to-consensus-events_wf
∀[V:Type]. ∀[A:Id List]. ∀[t:ℕ+]. ∀[f:(V List) ⟶ V]. ∀[v0:V]. ∀[L:consensus-rcv(V;A) List].
  (consensus-rcvs-to-consensus-events(f;t;v0;L) ∈ consensus-event(V;A) List × (consensus-rcv(V;A) List))
Proof
Definitions occuring in Statement : 
consensus-rcvs-to-consensus-events: consensus-rcvs-to-consensus-events(f;t;v0;L), 
consensus-rcv: consensus-rcv(V;A), 
consensus-event: consensus-event(V;A), 
Id: Id, 
list: T List, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
consensus-rcvs-to-consensus-events: consensus-rcvs-to-consensus-events(f;t;v0;L), 
so_lambda: λ2x y.t[x; y], 
prop: ℙ, 
nat_plus: ℕ+, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
spreadn: spread3, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cons: [a / b]
Latex:
\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[t:\mBbbN{}\msupplus{}].  \mforall{}[f:(V  List)  {}\mrightarrow{}  V].  \mforall{}[v0:V].  \mforall{}[L:consensus-rcv(V;A)  List].
    (consensus-rcvs-to-consensus-events(f;t;v0;L)  \mmember{}  consensus-event(V;A)  List
      \mtimes{}  (consensus-rcv(V;A)  List))
Date html generated:
2016_05_16-PM-00_48_49
Last ObjectModification:
2016_01_17-PM-07_57_35
Theory : event-ordering
Home
Index