Nuprl Lemma : consensus-refinement1
∀[V:Type]. ts-refinement(consensus-ts1(V);consensus-ts2(V);λx.if cs-is-decided(x) then x else UNDECIDED fi )
Proof
Definitions occuring in Statement : 
consensus-ts2: consensus-ts2(T), 
cs-is-decided: cs-is-decided(x), 
consensus-ts1: consensus-ts1(T), 
cs-undecided: UNDECIDED, 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
universe: Type, 
ts-refinement: ts-refinement(ts1;ts2;f)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
ts-refinement: ts-refinement(ts1;ts2;f), 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
infix_ap: x f y, 
ts-reachable: ts-reachable(ts), 
subtype_rel: A ⊆r B, 
consensus-ts2: consensus-ts2(T), 
ts-init: ts-init(ts), 
cs-is-decided: cs-is-decided(x), 
pi2: snd(t), 
pi1: fst(t), 
cs-ambivalent: AMBIVALENT, 
isl: isl(x), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
consensus-ts1: consensus-ts1(T), 
ts-type: ts-type(ts), 
consensus-state1: consensus-state1(V), 
top: Top, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cs-undecided: UNDECIDED, 
ts-rel: ts-rel(ts), 
cs-predecided: PREDECIDED[v], 
cs-decided: Decided[v], 
consensus-state2: consensus-state2(T), 
ts-final: ts-final(ts)
Latex:
\mforall{}[V:Type]
    ts-refinement(consensus-ts1(V);consensus-ts2(V);\mlambda{}x.if  cs-is-decided(x)  then  x  else  UNDECIDED  fi  )
Date html generated:
2016_05_16-AM-11_47_48
Last ObjectModification:
2016_01_17-PM-03_53_14
Theory : event-ordering
Home
Index