Nuprl Lemma : consensus-refinement5
∀[V:Type]
  ∀A:Id List. ∀W:{a:Id| (a ∈ A)}  List List.
    ((1 < ||W|| ∧ two-intersection(A;W))
    ⇒ ts-refinement(consensus-ts5(V;A;W);consensus-ts6(V;A;W);λs.cs-events-to-state(A; s)))
Proof
Definitions occuring in Statement : 
consensus-ts6: consensus-ts6(V;A;W), 
cs-events-to-state: cs-events-to-state(A; s), 
consensus-ts5: consensus-ts5(V;A;W), 
two-intersection: two-intersection(A;W), 
Id: Id, 
l_member: (x ∈ l), 
length: ||as||, 
list: T List, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
lambda: λx.A[x], 
natural_number: $n, 
universe: Type, 
ts-refinement: ts-refinement(ts1;ts2;f)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
ts-refinement: ts-refinement(ts1;ts2;f), 
member: t ∈ T, 
prop: ℙ, 
consensus-ts6: consensus-ts6(V;A;W), 
ts-init: ts-init(ts), 
consensus-ts5: consensus-ts5(V;A;W), 
ts-rel: ts-rel(ts), 
ts-type: ts-type(ts), 
pi1: fst(t), 
pi2: snd(t), 
consensus-state4: ConsensusState, 
cs-events-to-state: cs-events-to-state(A; s), 
bfalse: ff, 
consensus-state5: Knowledge(ConsensusState), 
consensus-accum-state: consensus-accum-state(A;L), 
list_accum: list_accum, 
nil: [], 
it: ⋅, 
spreadn: spread3, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
top: Top, 
uimplies: b supposing a, 
cand: A c∧ B, 
ts-reachable: ts-reachable(ts), 
consensus-state6: consensus-state6(V;A), 
infix_ap: x f y, 
one-consensus-event: y = x after e@a, 
consensus-event-constraint: e@a allowed in state x, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
consensus-rel-knowledge: consensus-rel-knowledge(V;A;W;x;y), 
consensus-rel-knowledge-step: consensus-rel-knowledge-step(V;A;W;x1;x2;y1;y2;a), 
cs-knowledge: Knowledge(x;a), 
cs-estimate: Estimate(s;a), 
cs-inning: Inning(s;a), 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
consensus-rel-knowledge-inning-step: consensus-rel-knowledge-inning-step(V;A;W;x1;x2;y1;y2;a), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
inning-event: NextInning, 
consensus-accum: consensus-accum(s;e), 
consensus-rel-knowledge-archive-step: consensus-rel-knowledge-archive-step(V;A;W;x1;x2;y1;y2;a), 
archive-event: Archive(v), 
consensus-rel-add-knowledge-step: consensus-rel-add-knowledge-step(V;A;W;x1;x2;y1;y2;a), 
consensus-message: consensus-message(b;i;z), 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
unit: Unit, 
ts-final: ts-final(ts), 
bool: 𝔹, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
deq-member: x ∈b L, 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
decidable: Dec(P), 
eq_id: a = b, 
bor: p ∨bq, 
Id: Id, 
deq: EqDecider(T), 
consensus-event: consensus-event(V;A), 
cons: [a / b], 
fpf-empty: ⊗, 
fpf-domain: fpf-domain(f), 
mk_fpf: mk_fpf(L;f), 
cs-knowledge-precondition: may consider v in inning i based on knowledge (s), 
fpf-ap: f(x), 
isl: isl(x), 
outl: outl(x), 
fpf-dom: x ∈ dom(f), 
less_than: a < b, 
less_than': less_than'(a;b), 
sq_stable: SqStable(P), 
two-intersection: two-intersection(A;W), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3]
Latex:
\mforall{}[V:Type]
    \mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.
        ((1  <  ||W||  \mwedge{}  two-intersection(A;W))
        {}\mRightarrow{}  ts-refinement(consensus-ts5(V;A;W);consensus-ts6(V;A;W);\mlambda{}s.cs-events-to-state(A;  s)))
Date html generated:
2016_05_16-PM-00_31_21
Last ObjectModification:
2016_01_17-PM-04_03_22
Theory : event-ordering
Home
Index