Nuprl Lemma : consensus-ts5-true-knowledge
∀[V:Type]
  ∀A:Id List. ∀W:{a:Id| (a ∈ A)}  List List. ∀x:ts-reachable(consensus-ts5(V;A;W)).
    let x1,x2 = x 
    in ∀a,b:{a:Id| (a ∈ A)} .
         let I,z = Knowledge(x2;a)(b) 
         in (I ≤ Inning(x1;b))
            ∧ case z
               of inl(p) =>
               let k,v = p 
               in k < I
                  ∧ (↑k ∈ dom(Estimate(x1;b)))
                  ∧ (Estimate(x1;b)(k) = v ∈ V)
                  ∧ (∀i:ℤ. ¬↑i ∈ dom(Estimate(x1;b)) supposing k < i ∧ i < I)
               | inr(p) =>
               ∀i:ℤ. ¬↑i ∈ dom(Estimate(x1;b)) supposing i < I 
         supposing ↑b ∈ dom(Knowledge(x2;a))
Proof
Definitions occuring in Statement : 
consensus-ts5: consensus-ts5(V;A;W), 
cs-knowledge: Knowledge(x;a), 
cs-estimate: Estimate(s;a), 
cs-inning: Inning(s;a), 
fpf-ap: f(x), 
fpf-dom: x ∈ dom(f), 
id-deq: IdDeq, 
Id: Id, 
l_member: (x ∈ l), 
list: T List, 
int-deq: IntDeq, 
assert: ↑b, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
spread: spread def, 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T, 
ts-reachable: ts-reachable(ts)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
ts-reachable: ts-reachable(ts), 
subtype_rel: A ⊆r B, 
ts-type: ts-type(ts), 
pi1: fst(t), 
consensus-ts5: consensus-ts5(V;A;W), 
prop: ℙ, 
uimplies: b supposing a, 
so_apply: x[s], 
top: Top, 
implies: P ⇒ Q, 
and: P ∧ Q, 
guard: {T}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
false: False, 
sq_stable: SqStable(P), 
not: ¬A, 
le: A ≤ B, 
true: True, 
cs-estimate: Estimate(s;a), 
cs-inning: Inning(s;a), 
cs-knowledge: Knowledge(x;a), 
ts-init: ts-init(ts), 
pi2: snd(t), 
fpf-ap: f(x), 
mk_fpf: mk_fpf(L;f), 
fpf-empty: ⊗, 
fpf-dom: x ∈ dom(f), 
cand: A c∧ B, 
less_than': less_than'(a;b), 
ts-rel: ts-rel(ts), 
infix_ap: x f y, 
consensus-rel-knowledge: consensus-rel-knowledge(V;A;W;x;y), 
consensus-rel-knowledge-step: consensus-rel-knowledge-step(V;A;W;x1;x2;y1;y2;a), 
consensus-rel-knowledge-inning-step: consensus-rel-knowledge-inning-step(V;A;W;x1;x2;y1;y2;a), 
consensus-rel-knowledge-archive-step: consensus-rel-knowledge-archive-step(V;A;W;x1;x2;y1;y2;a), 
consensus-rel-add-knowledge-step: consensus-rel-add-knowledge-step(V;A;W;x1;x2;y1;y2;a), 
consensus-state5: Knowledge(ConsensusState), 
decidable: Dec(P), 
squash: ↓T, 
Id: Id, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
exposed-bfalse: exposed-bfalse, 
rev_uimplies: rev_uimplies(P;Q), 
eq_id: a = b
Latex:
\mforall{}[V:Type]
    \mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.  \mforall{}x:ts-reachable(consensus-ts5(V;A;W)).
        let  x1,x2  =  x 
        in  \mforall{}a,b:\{a:Id|  (a  \mmember{}  A)\}  .
                  let  I,z  =  Knowledge(x2;a)(b) 
                  in  (I  \mleq{}  Inning(x1;b))
                        \mwedge{}  case  z
                              of  inl(p)  =>
                              let  k,v  =  p 
                              in  k  <  I
                                    \mwedge{}  (\muparrow{}k  \mmember{}  dom(Estimate(x1;b)))
                                    \mwedge{}  (Estimate(x1;b)(k)  =  v)
                                    \mwedge{}  (\mforall{}i:\mBbbZ{}.  \mneg{}\muparrow{}i  \mmember{}  dom(Estimate(x1;b))  supposing  k  <  i  \mwedge{}  i  <  I)
                              |  inr(p)  =>
                              \mforall{}i:\mBbbZ{}.  \mneg{}\muparrow{}i  \mmember{}  dom(Estimate(x1;b))  supposing  i  <  I 
                  supposing  \muparrow{}b  \mmember{}  dom(Knowledge(x2;a))
Date html generated:
2016_05_16-PM-00_23_56
Last ObjectModification:
2016_01_17-PM-04_01_58
Theory : event-ordering
Home
Index