Nuprl Lemma : cp-state-type_wf
∀[cp:ClassProgram(Top)]. ∀[i:Id].  (cp-state-type(cp;i) ∈ Type)
Proof
Definitions occuring in Statement : 
cp-state-type: cp-state-type(cp;i), 
class-program: ClassProgram(T), 
Id: Id, 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
cp-state-type: cp-state-type(cp;i), 
class-program: ClassProgram(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
so_apply: x[s], 
top: Top, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
spreadn: spread6, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False
Latex:
\mforall{}[cp:ClassProgram(Top)].  \mforall{}[i:Id].    (cp-state-type(cp;i)  \mmember{}  Type)
Date html generated:
2016_05_16-PM-00_57_56
Last ObjectModification:
2015_12_29-PM-01_43_07
Theory : event-ordering
Home
Index