Nuprl Lemma : cs-ref-map-unchanged
∀[V:Type]
  ((∀v1,v2:V.  Dec(v1 = v2 ∈ V))
  ⇒ (∀A:Id List. ∀W:{a:Id| (a ∈ A)}  List List.
        (two-intersection(A;W)
        ⇒ (∀f:ConsensusState ⟶ (consensus-state3(V) List)
              (cs-ref-map-constraints(V;A;W;f)
              ⇒ (∀x,y:ts-reachable(consensus-ts4(V;A;W)).
                    ((x ts-rel(consensus-ts4(V;A;W)) y)
                    ⇒ (∀i:ℕ
                          ((∀v:V. (in state x, inning i could commit v  ⇒ in state y, inning i could commit v ))
                             ⇒ ((f y[i] = f x[i] ∈ consensus-state3(V))
                                ∨ (∃v:V
                                    ((f y[i] = COMMITED[v] ∈ consensus-state3(V))
                                    ∧ (f x[i] = CONSIDERING[v] ∈ consensus-state3(V)))))) supposing 
                             (i < ||f y|| and 
                             i < ||f x||)))))))))
Proof
Definitions occuring in Statement : 
cs-ref-map-constraints: cs-ref-map-constraints(V;A;W;f), 
two-intersection: two-intersection(A;W), 
cs-inning-committable: in state s, inning i could commit v , 
consensus-ts4: consensus-ts4(V;A;W), 
consensus-state4: ConsensusState, 
cs-commited: COMMITED[v], 
cs-considering: CONSIDERING[v], 
consensus-state3: consensus-state3(T), 
Id: Id, 
l_member: (x ∈ l), 
select: L[n], 
length: ||as||, 
list: T List, 
nat: ℕ, 
less_than: a < b, 
decidable: Dec(P), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
ts-reachable: ts-reachable(ts), 
ts-rel: ts-rel(ts)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
ts-reachable: ts-reachable(ts), 
consensus-ts4: consensus-ts4(V;A;W), 
ts-type: ts-type(ts), 
pi1: fst(t), 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
cs-ref-map-constraints: cs-ref-map-constraints(V;A;W;f), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
infix_ap: x f y, 
subtype_rel: A ⊆r B, 
guard: {T}, 
ts-stable: ts-stable(ts;x.P[x])
Latex:
\mforall{}[V:Type]
    ((\mforall{}v1,v2:V.    Dec(v1  =  v2))
    {}\mRightarrow{}  (\mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.
                (two-intersection(A;W)
                {}\mRightarrow{}  (\mforall{}f:ConsensusState  {}\mrightarrow{}  (consensus-state3(V)  List)
                            (cs-ref-map-constraints(V;A;W;f)
                            {}\mRightarrow{}  (\mforall{}x,y:ts-reachable(consensus-ts4(V;A;W)).
                                        ((x  ts-rel(consensus-ts4(V;A;W))  y)
                                        {}\mRightarrow{}  (\mforall{}i:\mBbbN{}
                                                    ((\mforall{}v:V
                                                            (in  state  x,  inning  i  could  commit  v 
                                                            {}\mRightarrow{}  in  state  y,  inning  i  could  commit  v  ))
                                                          {}\mRightarrow{}  ((f  y[i]  =  f  x[i])
                                                                \mvee{}  (\mexists{}v:V
                                                                        ((f  y[i]  =  COMMITED[v])
                                                                        \mwedge{}  (f  x[i]  =  CONSIDERING[v])))))  supposing 
                                                          (i  <  ||f  y||  and 
                                                          i  <  ||f  x||)))))))))
Date html generated:
2016_05_16-PM-00_08_33
Last ObjectModification:
2016_01_17-PM-03_55_06
Theory : event-ordering
Home
Index