Nuprl Lemma : cut-order-induction
∀[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀f:sys-antecedent(es;X).
    ∀[P:E(X) ⟶ ℙ]. ((∀b:E(X). ((∀a:E(X). (P[a]) supposing ((¬(a = b ∈ E(X))) and a ≤(X;f) b)) ⇒ P[b])) ⇒ (∀e:E(X). P[\000Ce]))
Proof
Definitions occuring in Statement : 
cut-order: a ≤(X;f) b, 
sys-antecedent: sys-antecedent(es;Sys), 
es-E-interface: E(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
strongwellfounded: SWellFounded(R[x; y]), 
exists: ∃x:A. B[x], 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
nat: ℕ, 
es-E-interface: E(X), 
ge: i ≥ j , 
less_than: a < b, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
es-causle: e c≤ e', 
label: ...$L... t, 
sq_type: SQType(T), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True
Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).
        \mforall{}[P:E(X)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}b:E(X).  ((\mforall{}a:E(X).  (P[a])  supposing  ((\mneg{}(a  =  b))  and  a  \mleq{}(X;f)  b))  {}\mRightarrow{}  P[b]))  {}\mRightarrow{}  (\mforall{}e:E(X).  P[e\000C]))
Date html generated:
2016_05_17-AM-07_45_58
Last ObjectModification:
2016_01_17-PM-02_48_36
Theory : event-ordering
Home
Index