Nuprl Lemma : cut-order_weakening-le

[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[f:sys-antecedent(es;X)]. ∀[a,b:E(X)].  a ≤(X;f) supposing a ≤loc 


Proof




Definitions occuring in Statement :  cut-order: a ≤(X;f) b sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e ≤loc e'  uimplies: supposing a uall: [x:A]. B[x] top: Top universe: Type
Definitions unfolded in proof :  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] es-E-interface: E(X) subtype_rel: A ⊆B prop: implies:  Q cut-order: a ≤(X;f) b uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q uiff: uiff(P;Q)

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:sys-antecedent(es;X)].  \mforall{}[a,b:E(X)].
    a  \mleq{}(X;f)  b  supposing  a  \mleq{}loc  b 



Date html generated: 2016_05_17-AM-07_44_45
Last ObjectModification: 2015_12_28-PM-11_33_12

Theory : event-ordering


Home Index