Nuprl Lemma : eclass-union-classrel
∀[Info,A:Type]. ∀[X:EClass(bag(A))]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:A].
  uiff(v ∈ eclass-union(X)(e);↓∃b:bag(A). (v ↓∈ b ∧ b ∈ X(e)))
Proof
Definitions occuring in Statement : 
eclass-union: eclass-union(X), 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
squash: ↓T, 
and: P ∧ Q, 
universe: Type, 
bag-member: x ↓∈ bs, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
eclass-union: eclass-union(X), 
squash: ↓T, 
prop: ℙ, 
classrel: v ∈ X(e), 
bag-member: x ↓∈ bs, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
class-ap: X(e), 
eclass: EClass(A[eo; e]), 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B
Latex:
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(bag(A))].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:A].
    uiff(v  \mmember{}  eclass-union(X)(e);\mdownarrow{}\mexists{}b:bag(A).  (v  \mdownarrow{}\mmember{}  b  \mwedge{}  b  \mmember{}  X(e)))
Date html generated:
2016_05_16-PM-02_08_30
Last ObjectModification:
2016_01_17-PM-07_38_10
Theory : event-ordering
Home
Index